Acknowledgment. We wish to acknowledge helpful discussions with Professor Edgar Heilbronner, and financial support of this research from the National Science Foundation.

References and Notes

(1) (a) Louisiana State University; (b) University of Florida.
(2) C. Piedrahita, W. J. Dolbier, Jr., R. W. Gandour, R. W. Strozier, and K. N. Houk, Tetrahedron Lett., in press.
(3) (a) C. R. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc. 94, 1451 (1972); C. R. Brundle, M. B. Robin, and W. A. Kuebler, ibid., 94, 1466 (1972). (b) J. W. Rabalais, "Principles of Ultraviolet Photoelectron Spectroscopy'', Wiley-Interscience, New York, N.Y., 1977, pp 323-328, 351-354. (c) Recent discussions of the influence of fluorine upon π orbital energies can be found in D. G. Streets and J. P. Ceasar, Mol. Phys., 26, 1037 (1973); D. G. Streets, Chem. Phys. Lett., 28, 555 (1974); J. P. Delwiche, M.-Th. Praet, G. Caprace, M.-J. Hubin-Franskin, P. Natalis, and J. E. Collin., J. Electron Spectrosc. Relat. Phenom., 12, 395 (1977).
(4) G. Bieri, E. Heilbronner, J.-P. Stadelmann, J. Vogt, and W. v. Niessen, J. Am. Chem. Soc., 99, 6832 (1977).
(5) M. J. S. Dewar and D. Landman, J. Am. Chem. Soc., 99, 7439 (1977).
(6) The photoelectron spectra were recorded on a Perkin-Elmer PS-18 pho-
toelectron spectrometer, using xenon and argon as internal calibrants. The sample of 1,1-difluoroallene was prepared by the method of Tarrant, ${ }^{7}$ and was purified by gas chromatography using a $15-\mathrm{ft} 20 \%$ SE-30 on Chromosorb column at $110^{\circ} \mathrm{C}$.
(7) P. Tarrant, F. G. Drakesmith, and O. J. Steward, J. Org. Chem., 33, 280 (1968).
(8) C. Baker and D. W. Turner, Chem. Commun., 480 (1969).
(9) R. K. Thomas and H. Thompson, Proc. R. Soc. London, Ser. A., 339, 29 (1974).
(10) H. Schmidt and A. Schweig, Angew. Chem., Int. Ed. Engl., 12, 307 (1973).
(11) R. Bralsford, P. V. Harris, and W. C. Price, Proc. R. Soc. London, Ser. A, 258, 459 (1960).
(12) D. A. Krause, J. W. Taylor, and R. F. Fenske, J. Am. Chem. Soc., 100, 718 (1978).
(13) T. Koopmans, Physica (Uirecht), 1, 104 (1934).
(14) H. Basch, G. Bieri, E. Heilbronner, and T. B. Jones, Helv. Chim. Acta, 61, 46 (1978).
(15) J. R. Durig, Y. S. Li, J. D. Witt, A. P. Zeno, and P. D. Ellis, Spectrochim. Acta, Part A, 33, 529 (1977).
(16) H. Bock, B. Solouki, G. Bert, and P. Rasmus, J. Am. Chem. Soc., 99, 1663 (1977).
(17) R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 724 (1971).

Analysis of the Topological Features of the Conformational Hypersurface of n-Butane ${ }^{\dagger}$

Michael R. Peterson and Imre G. Csizmadia*
Contribution from the Department of Chemistry, University of Toronto, Toronto, Ontario, Canada. Received September 19. 1977

Abstract

An analytic conformational hypersurface was fitted to a total of 63 SCF energy points for n-butane. The location of the two minima and two maxima were determined by direct extremization while the positions of the four saddle and four supersaddle points were obtained by minimizing the Euclidean norm of the gradient vector. While the anti conformation was exactly at the point predicted by intuitive stereochemical arguments, the gauche conformation was very sensitive to CH_{3} group torsional relaxations.

In recent years, much work has been done regarding conformational and reactive surfaces, but there have been few studied involving hypersurfaces (surfaces of more than two coordinates). ${ }^{1}$ We wish to report the determination of the complete torsional hypersurface for n-butane (1), including the determination of the geometries of all critical points.

This triple-rotor hypersurface is of interest for several reasons. First, it serves as an example of a conformational hypersurface of three coordinates. It also allows the accurate determination of the interaction effects of the nonbonded methyl groups, a crucial parameter (as a model for a "gauche interaction") in empirical force-field calculations such as molecular mechanics. Finally, it is a prelude to ab initio hypersurfaces of molecules containing heteroatoms which empirical methods may not be able to treat properly.

As n-butane is one of the simplest molecules capable of ex-

[^0]isting in two stable conformations, anti and gauche, it has been well studied experimentally (see Table I). Also summarized there are the previous empirical results and $a b$ initio calculations. All previous ab initio studies and even some of the much less costly empirical calculations have fixed the methyl groups in the staggered conformation (that is, not allowed for methyl rotation) and have also assumed that the saddle point for the anti-to-gauche conversion occurs at the eclipsed conformer (θ_{1} $=120^{\circ}$). Some have even assumed that the gauche conformation has a torsional angle $\left(\theta_{1}\right)$ of 60°, despite accumulated experimental and theoretical data to the contrary.

Hendrickson, in the course of his molecular-mechanics calculations on the conformations of cycloalkanes, reported ${ }^{2}$ that the gauche minimum occurred at $\left(63^{\circ}, 55^{\circ}, 55^{\circ}\right)$. The $A($ anti $) \rightarrow G$ (gauche) saddle point was found at the point predicted by simple stereochemical arguments about eclipsed and staggered bonds, namely $\left(120^{\circ}, 60^{\circ}, 60^{\circ}\right)$. The bond lengths were fixed at 1.533 and $1.09 \AA$ for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$, respectively, for all conformers studied. His barrier-height values (see Table I, ref 2), however, are lower than the experimental values.

Scheraga and co-workers determined ${ }^{3}$ the critical points of the n-butane hypersurface, using rigid rotation. The gauche conformer was located at $\left(65^{\circ}, 52^{\circ}, 52^{\circ}\right)$, and the $\mathrm{A} \rightarrow \mathrm{G}$ saddle point at $\left(121^{\circ}, 60^{\circ}, 60^{\circ}\right)$. Note the large $\mathrm{G} \rightarrow \mathrm{G}$ barrier (see Table I, ref 3) of nearly $14 \mathrm{kcal} / \mathrm{mol}$, compared to the experimental value of $6 \mathrm{kcal} / \mathrm{mol}$.
Bartell calculated ${ }^{4,5}$ the gauche minimum to be at $\left(66.8^{\circ}\right.$, $56.7^{\circ}, 56.7^{\circ}$), optimizing all internal coordinates. All of these

Table I. Comparison of Experimental and Calculated Results for n-Butane

method	Experimental Results ${ }^{a}$ gauche-anti $\Delta E, \mathrm{kcal} / \mathrm{mol}$	gauche angle $\left(\theta_{1}\right)$, deg	A-G ${ }^{b}$ barrier. kcal/mol	$\begin{gathered} \mathrm{G-G}{ }^{b} \\ \text { barrier, } \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	CH_{3} rot. barrier ${ }^{b}$ for $\mathrm{A}, \mathrm{kcal} / \mathrm{mol}$	ref
IR spectrosc, entropy data	0.800		3.60		$3.60{ }^{\text {c }}$	14
heat capacity			3.60			15
raman spectrosc	0.770 (90)					16
raman spectrosc	0.76 (10)					17
heats of formn	0.7		3.72	5.30	3.40^{c}	18
electron diffraction	0.630 (350)	63 (8)				19
electron diffraction		67.5 (11)				7
ultrasonic absorption			4.2 (4)	~ 6.7		20
temp-dependent NMR spectrosc	0.681 (35)	66 (1)				21
laser Raman spectrosc	0.966 (54)					22
electron diffraction	0.497 (220)	64.9 (60)				23

type of rotation	geometry	method	Empirical Calculations gauche-anti $\Delta E, \mathrm{kcal} / \mathrm{mol}$	$\begin{gathered} \text { gauche } \\ \text { angle } \\ \left(\theta_{1}\right), \text { deg } \\ \hline \end{gathered}$	$\mathrm{A}-\mathrm{G}^{b}$ barrier, $\mathrm{kcal} / \mathrm{mol}$	$\begin{gathered} \mathrm{G-G} \mathrm{G}^{b} \\ \text { barrier, } \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	CH_{3} rot. barrier ${ }^{b}$ for A, kcal/mol	ref
relaxed	optimized ${ }^{s}$	molecular mechanics	0.6	63	3.2	3.7		2
relaxed ${ }^{d}$	optimized ${ }^{\text {d }}$	molecular mechanics	$0.73{ }^{\text {e }}$		$2.94{ }^{f}$	$4.55{ }^{\circ}$		24
relaxed	optimized	molecular mechanics	$0.93{ }^{\prime}$			4.9		25
relaxed	optimized	molecular mechanics	0.69	64				26
N/A ${ }^{\text {u }}$	N/ A^{4}	thermodynamic anal	0.76	62.3	3.50	4.44		27
rigid	expl	EPEN	1.02	65	$4.38{ }^{f}$		3.30^{c}	28
relaxed	optimizeds	molecular mechanics	$0.92{ }^{\text {e }}$		$3.26{ }^{f}$	$4.49{ }^{e}$		29
relaxed	optimized	molecular mechanics	$0.675^{\text {h }}$	66.0				30
rigid	exptl	EPEN	0.68	65	3.94	13.74		3
relaxed	optimized	MUB-2	$0.54{ }^{\text {c }}$	$66.8{ }^{\text {w }}$	4.03	5.56		5

type of rotation	geometry	basis set	total energy anti confn, hartrees	b Initio Calcula $\begin{aligned} & \text { gauche-anti } \\ & \Delta E, \mathrm{kcal} / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { gauche } \\ & \text { angle } \\ & \left(\theta_{1}\right), \text { deg } \end{aligned}$	$A-G^{b}$ barrier, $\mathrm{kcal} / \mathrm{mol}$	$\mathrm{G}-\mathrm{G}^{b}$ barrier, $\mathrm{kcal} / \mathrm{mol}$	CH_{3} rot. barrier ${ }^{b}$ for $\mathrm{A}, \mathrm{kcal} / \mathrm{mol}$	ref
rigid	exptl	i	-156.40513	0.822	69.1	$3.536 f$	6.821	2.92	31
rigid	exptl	j	-157.03157	0.761	68.7	$3.619 f$	6.834	2.94	31
rigid	std	k		1.76	77.2	$4.00 f$	12.69	$3.63{ }^{\text {c }}$	12
rigid	exptl	k		1.22	72.3	$3.50{ }^{\prime}$	7.68	$3.26^{\text {c }}$	12
relaxed ${ }^{\circ}$	std	k	-155.46592	1.13	70.5	$3.58{ }^{f}$	5.72	$3.40{ }^{\text {c }}$	12
rigid	std	l	-133.024 9	1.47	68.	3.75	10.1	$5.5{ }^{\text {c }}$	32
relaxed ${ }^{\circ}$	std	m	-157.070 44	1.09	68.5	3.588	5.95	3.70	33
rigid	std	n	-156.5350	$1.8{ }^{\text {e }}$		3.8 f	10.2^{e}	$3.4{ }^{p}$	34
rigid	exptl	k	-155.464 37	0.95	69.5	3.56	8.37	3.639	35

${ }^{a}$ Estimated error in last figure enclosed in parentheses. ${ }^{b} \mathrm{~A}$ is anti; G is gauche. ${ }^{c}$ Value assumed to be for anti conformation. ${ }^{d}$ Not stated explicitly. ${ }^{e}$ Gauche conformation assumed to have $\theta_{1}=60^{\circ}$. ${ }^{f}$ Anti-guache barrier taken as $E\left(\theta_{1}=120^{\circ}\right)-E\left(\theta_{1}=180^{\circ}\right)$. ${ }^{g}$ Except methyl-group torsional angles apparently. ${ }^{h}$ This value is $0.730 \mathrm{kcal} /$ mol when corrected for zero-point vibration. ${ }^{i}(5 \mathrm{~s} 2 \mathrm{p} / 2 \mathrm{~s}) \rightarrow[2 \mathrm{~s} 1 \mathrm{p} / \mathrm{ls}]$. ${ }^{j}(7 \mathrm{~s} 3 \mathrm{p} / 3 \mathrm{~s}) \rightarrow[2 \mathrm{~s} 1 \mathrm{p} / 1 \mathrm{~s}] .{ }^{k}$ STO-3G (Gaussian 70, ref 6). ${ }^{l}$ FSGO. ${ }^{m} 4-31 \mathrm{G}$ (Gaussian 70, ref 6). ${ }^{n}(5 \mathrm{~s} 3 \mathrm{p} / 2 \mathrm{~s}) \rightarrow[2 \mathrm{~s} 1 \mathrm{p} / 1 \mathrm{~s}] .{ }^{\circ} \mathrm{C}-\mathrm{C}-\mathrm{C}$ angles only optimized at each point. ${ }^{p}$ The value is $3.1 \mathrm{kcal} / \mathrm{mol}$ for the gauche conformation. ${ }^{9}$ The value is $2.51 \mathrm{kcal} / \mathrm{mol}$ for the gauche conformation. ${ }^{r}$ These values refer to ΔG and not ΔE. ${ }^{s}$ Bond lengths fixed at 1.533 and $1.09 \AA$ for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$, respectively. Taken from ref 36 and used to calculate the G-G barrier. "Not applicable, as the authors based their resuits mainly on recalculations and averages of previous results.
${ }^{0}$ This value is 0.63 when corrected for zero-point vibration. ${ }^{w}$ Reference 4.
results indicate that there is appreciable methyl-group torsion as the methyl groups interact in the G conformer, but the A \rightarrow G saddle point is very near the eclipsed conformation (120°, $60^{\circ}, 60^{\circ}$) that many previous workers have assumed.

The purpose of this work is to investigate the torsional behavior of n-butane by ab initio methods, to compute the complete conformational hypersurface, and to determine all of the critical points of the hypersurface.

Method

A total of 63 unique (i.e., not symmetrically related) points on the hypersurface were chosen by independently varying θ_{2} and θ_{3} from 0 to 90° in 30° increments, for θ_{1} values ranging from 0 to 180°, again in 30° steps. A point was also taken at $\left(70^{\circ}, 60^{\circ}, 60^{\circ}\right)$ near the anticipated gauche minimum. All calculations were performed using a minimal contracted Gaussian basis set, ${ }^{6}$ for the rigid rotation (torsion) at the ex-
perimental geometry. ${ }^{7}$ This geometry was used, with rigid rotation, for all previous ab initio studies on n-butane where a standard geometry was not used (see Table I). The geometries were not optimized for each point so that differences in the determination of the critical points from the hypersurface which permitted completely independent torsional freedom could be ascertained. Partial geometry optimization would probably improve the results but would obscure the comparison with previous ab initio work.

These points were then fitted ${ }^{8}$ in a least-squares sense by the analytic equation

$$
\begin{align*}
E\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\sum_{i=1}^{34} C_{i} f_{1 i}(& \left.\theta_{1}, a_{1 i}, b_{1 i}\right) \\
& \times f_{2 i}\left(\theta_{2}, a_{2 i}, b_{2 i}\right) f_{3 i}\left(\theta_{3}, a_{3 i}, b_{3 i}\right) \tag{1}
\end{align*}
$$

where θ_{1}, θ_{2}, and θ_{3} are the torsional angles (measured in radians). The average error of the fit was $0.21 \mathrm{kcal} / \mathrm{mol}$ which

Table II. Terms and Coefficients of the Analytic Equation

i	θ_{1} term			θ_{2} term			$\overline{\theta_{3} \text { term }}$			C_{i}
	fli^{a}	$a_{1 i}$	$b_{1 i}$	$\overline{f_{2 i}{ }^{a}}$	$a_{2 i}$	$b_{2 i}$	$\overline{f_{31}{ }^{a}}$	$a_{3 i}$	$b_{3 i}$	
1	1			1			1			5.62514
2	5	1.0	-2.00	1			1			14.06308
3	4	0.0	-2.75	5	3.0	-2.50	5	3.0	-2.50	1.83573
4	5	3.0	-2.00	5	3.0	-1.00	5	3.0	-1.00	0.55319
5	3	0.0	1.00	1			1			-0.139 32
6	3	0.0	3.00	1			1			2.22017
7	3	0.0	7.00	1			1			0.07701
8	1			3	0.0	3.00	3	0.0	3.00	0.35234
9	3	0.0	6.00	5	3.0	-1.50	5	3.0	-1.50	0.43945
10	3	0.0	2.00	3	0.0	3.00	3	0.0	3.00	-1.215 11
11	3	0.0	3.00	3	0.0	3.00	3	0.0	3.00	-1.12771
12	3	0.0	4.00	3	0.0	3.00	3	0.0	3.00	0.44715
13	3	0.0	5.00	3	0.0	3.00	3	0.0	3.00	1.69313
14	3	0.0	6.00	3	0.0	3.00	3	0.0	3.00	0.87057
15	1			3	0.0	3.00	1			1.45155
16	1			1			3	0.0	3.00	1.45155
17	3	0.0	1.00	3	0.0	3.00	1			-0.70775
18	3	0.0	1.00	1			3	0.0	3.00	-0.70775
19	3	0.0	3.00	3	0.0	3.00	1			0.78100
20	3	0.0	3.00	1			3	0.0	3.00	0.78100
21	3	0.0	4.00	3	0.0	3.00	1			0.87138
22	3	0.0	4.00	1			3	0.0	3.00	0.87138
23	3	0.0	5.00	3	0.0	3.00	1			0.86922
24	3	0.0	5.00	1			3	0.0	3.00	0.86922
25	3	0.0	6.00	3	0.0	3.00	1			0.32084
26	3	0.0	6.00	1			3	0.0	3.00	0.32084
27	4	1.0	-4.00	2	0.4	3.00	2	0.4	3.00	-11.089 79
28	4	-1.0	-4.00	2	-0.4	-3.00	2	-0.4	-3.00	-11.08979
29	4	0.8	-2.25	3	0.87	3.00	3	0.87	3.00	8.76877
30	4	-0.8	-2.25	3	-0.87	3.00	3	-0.87	3.00	8.76877
31	4	0.4	-4.00	3	0.82	3.00	1			-5.59275
32	4	0.4	-4.00	1			3	0.82	3.00	-5.59275
33	4	-0.4	-4.00	3	-0.82	3.00	1			-5.59275
34	4	-0.4	-4.00	1			3	-0.82	3.00	-5.59275

${ }^{a}$ Function codes: $\left.1,1.0 ; 2, \sin (b(\theta-a)) ; 3, \cos (b(\theta-a)) ; 4, \exp (b(\theta-a))^{2}\right)$, where $-\pi \leq \theta-a \leq \pi ; 5, \exp \left(b(a \theta)^{2}\right)$, where $-\pi \leq a \theta \leq$ π.
represents a relative error of 0.47% since the calculated SCF energy difference between the global minimum and global maximum was $45.00 \mathrm{kcal} / \mathrm{mol}$.

The form of the analytic equation (1), detailed in Table II, is deserving of some comment. Each of the 34 terms is a product $f_{1 i}\left(\theta_{1}\right) f_{2 i}\left(\theta_{2}\right) f_{3 i}\left(\theta_{3}\right)$ of three functions, one for each hypersurface coordinate θ_{1}, θ_{2}, and θ_{3}. The actual functions used in each term $\left(f_{1 i}, f_{2 i}, f_{3 i}\right)$ and the associated constants $\left(a_{1 i}, b_{1 i} ; a_{2 i}, b_{2 i} ; a_{3 i}, b_{3 i}\right)$ are listed in Table II, along with the terms linear coefficient (C_{i}) in the sum (1). For example, the first term is $-1.21511 \cos 2 \theta_{1} \cos 3 \theta_{2} \cos 3 \theta_{3}$. The function consists of terms for independent rotation about each of the bonds (terms 2, 5-7, 15, and 16) and terms which account for the correlation among the various torsions (terms 3, 4, 8-14, 17-34). The function may also be broken down into terms which are symmetric with respect to rotation (that is θ_{i} and $-\theta_{i}$ are not distinguished) and those that are antisymmetric. The first 26 terms fall into the former category, while the last 8 terms (27-34) contribute the hypersurface asymmetry.

There are several restrictions placed on the form of the equation by the symmetry of n-butane:
(1) The conformations ($\theta_{1}, \theta_{2}, \theta_{3}$) and ($\theta_{1}, \theta_{3}, \theta_{2}$) are enantiomeric, so the equation must be invariant to interchange of θ_{2} and θ_{3}. In other words, for all values of θ_{1}, the hypersurface must have a diagonal mirror plane cutting the (θ_{2}, θ_{3}) subspace.
(2) The conformations $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ and $\left(-\theta_{1},-\theta_{2},-\theta_{3}\right)$ are equivalent, forcing inversion symmetry about the origin (0°, $\left.0^{\circ}, 0^{\circ}\right)$. The point $\left(180^{\circ}, 0^{\circ}, 0^{\circ}\right)$ is therefore also a center of inversion.
(3) The equation must be periodic in θ_{1}, θ_{2}, and θ_{3} with periods of 360,120 , and 120°, respectively.

This last requirement was readily met by using a Fourier expansion, but due to the sharp maxima and large energies calculated for syn conformers (θ_{1} near 0°), Gaussian functions proved to give a more compact description of the hypersurface. To obtain a "repeating Gaussian" in accordance with (3), the arguments were reduced to lie between $-\pi$ and π by addition or subtraction of multiples of 2π. These functions (codes 4 and 5 of Table II) are used in terms 2, 3, 4, 9, and 27-34.

Property 1 , the equivalence of θ_{2} and θ_{3}, was realized in two ways, the simplest of which is to use a product $f_{2 i} f_{3 i}$ where the functions $f_{2 i}$ and $f_{3 i}$ are identical. This may be seen in Table II for functions 1-14 and 27-30. Alternatively, two terms could be added as in $C_{i} f_{1 i} f_{2 i}+C_{i} f_{1} f_{3 i}$ where $f_{2 i}$ is identical with $f_{3 i}$. This form of (1) may be seen for the pairs of terms 15,16 through $25,26,31,32$, and 33,34 .

The centers of inversion, property 2 , were already incorporated into terms $1-26$ since $\cos \theta=\cos (-\theta)$ and all the "repeating Gaussians" were centered at $\theta=0^{\circ}$. While deviation of θ_{1} from the ideal staggered and gauche angles has been accounted for by the Fourier terms 5-7, 9-14, and 17-26, no such allowance has been made for the methyl rotors. In fact, terms $1-25$ will not distinguish between $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ and $\left(\theta_{1},-\theta_{2}, \theta_{3}\right)$ for any value of θ_{1} [there must be no difference for the syn (θ_{1} $\left.=0^{\circ}\right)$ or anti $\left(\theta_{1}=180^{\circ}\right)$ conformations $]$. Thus all θ_{2} and θ_{3} minima will occur at 60° for all values of θ_{1}.

The last 8 terms in Table II allow for deviations in the (θ_{2}, θ_{3}) surface. Note that the effects of these terms are highly localized in θ_{1} coordinate space by the large negative exponents

Figure 1. Two cross-sections of the n-butane hypersurface: (A) $E\left(\theta_{1}, \theta_{2}\right)$ with θ_{3} held staggered (60°): (B) $E\left(\theta_{2}, \theta_{3}\right)$ for the anti conformer ($\theta_{1}=$ 180°).

Figure 2. Potential energy of central $\mathrm{C}-\mathrm{C}$ bond rotation, with both methyl groups held staggered ($\theta_{2}=\theta_{3}=60^{\circ}$).
of the θ_{1} "repeating Gaussian" functions. Pairs of terms 27,28 and 29,30 are required to maintain the inversion centers, and the phase of the sine function in term 28 must be reversed to that of 27 when the direction of rotation is inverted. The pair of terms 31,32 is required by property 1 and the pair 33,34 by property 2 , resulting in four terms with the same linear coefficient being generated by using term 31 .

In total there are 23 different terms, the remaining 11 terms being required to give the hypersurface the correct symmetry properties. There are 15 nonlinear parameters (the a 's and b 's in eq 1 and Table II) that were partially optimized manually. The 23 linear coefficients were determined by least-squares regression.

Results and Discussion

In Figure 1 are shown two cross sections of the hypersurface. One (Figure 1A) gives $E\left(\theta_{1}, \theta_{2}\right)$ with θ_{3} held staggered, while the other (Figure 1B) displays the dependence of the potential energy on the methyl-group torsional angles for the anti conformer. Figure 2 shows the cross section for central $\mathrm{C}-\mathrm{C}$ bond rotation with both methyl groups held staggered.

A critical point is defined by a null energy gradient vector

$$
\begin{equation*}
\operatorname{grad} E=0 \tag{2}
\end{equation*}
$$

with components

$$
\begin{equation*}
\left(\frac{\partial E}{\partial q_{1}}, \frac{\partial E}{\partial q_{2}}, \ldots, \frac{\partial E}{\partial q_{n}}\right)=(0,0, \ldots, 0) \tag{3}
\end{equation*}
$$

where q_{i} is some coordinate, often an internal coordinate, and n is the number of coordinates included in the study. A hypersurface of three coordinates may possess four types of critical points: minima (order 0), saddle points (order 1), super-saddle points (order 2), and maxima (order 3). The order refers to the number of negative eigenvalues (imaginary "frequencies") ${ }^{9}$ of the Hessian ("force constant") matrix H, which has elements

$$
\begin{equation*}
H_{i j}=\partial^{2} E / \partial q_{i} \partial q_{j} \tag{4}
\end{equation*}
$$

Stereochemical intuition may be used to predict the approximate structure of the various critical points since, for hydrocarbons, staggered conformers are usually more stable than eclipsed ones. The critical structures derived from this intuitive consideration are shown in Figure 3. These geometries were used as initial guesses for the critical-point searches on the fitted hypersurface.

The two minima and two maxima were found by direct extremization of the energy, using a variable-metric optimization technique. ${ }^{10}$ The eight saddle points were located by the minimization of S_{g}, the squared length of the gradient vector, ${ }^{11}$ where

$$
\begin{equation*}
S_{\mathrm{g}}=\sum_{i=1}^{3}\left[\partial E / \partial \theta_{i}\right]^{2} \tag{5}
\end{equation*}
$$

Figure 4 shows the positions of the various critical points in a unit cell of the coordinate space. Note especially that there is a saddle point between each pair of adjacent minima and a super-saddle point between each pair of adjacent maxima. Saddle points may be interconnected either through minima or super-saddle points, while in going from one super-saddle point to a nother, one must pass through either a saddle point or a maximum.

In Table I our results are presented with the experimental values and also with the other theoretical results. Those of

Figure 3. Intuitive structures of the critical points of the n-butane hypersurface.

Radom and Pople (ref 12, fourth row of the ab initio part of Table I), who have also calculated ab initio the relevant parameters for rigid rotation of n-butane at the same experimental geometry ${ }^{7}$ (curve D of their paper), using the same basis set, are the most comparable. As expected for rigid rotation, the energies of conformers where nonbonded atoms (here, the methyl-group hydrogens) come into close proximity (as in the syn conformers $\mathbf{1 c}, \mathbf{2 c}, \mathbf{3 a}$) are overestimated, as the molecular geometry was not relaxed to reduce the interaction. This leads to the overestimation of the gauche-syn-gauche barrier, as may be seen in Figure 2, which corresponds to curve D of Radom and Pople.

In the gauche conformation (0a) the methyl groups are rotated away from the "ideal" staggered angle $\left(60^{\circ}\right)$ to reduce the nonbonded hydrogen-hydrogen interaction. This lowers the gauche-anti energy difference by $0.27 \mathrm{kcal} / \mathrm{mol}$ and reduces the gauche dihedral angle compared with that of Radom and Pople, ${ }^{12}$ who did not allow methyl-group rotation, but has little effect on the anti-gauche barrier since the saddle point still occurs very near the "ideal" $\left(120^{\circ}, 60^{\circ}, 60^{\circ}\right)$ conformation (1d, see Table III). Our results, however, are in very close agreement with the empricial studies ${ }^{2-4}$ mentioned earlier, where the methyl groups were allowed to relax during the searches for the critical points.

The same effect is noticed for methyl-group rotation in the gauche conformation; however, in this case both the minima (0a) and the saddle-point (1a) structures are significantly shifted from the idealized values (see Table III). The central $\mathrm{C}-\mathrm{C}$ angle (θ_{1}) is predicted to increase by about 5° as the saddle point is approached.

Although it might be desirable to compare the hypersurface equation (1) with a simple sum of cosine terms ${ }^{37}$

$$
\begin{align*}
E\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=C_{1} & +C_{2} \cos \theta_{1}+C_{3} \cos 2 \theta_{1} \\
& +C_{4} \cos 3 \theta_{1}+C_{5}\left(\cos \theta_{2}+\cos \theta_{3}\right) \tag{6}
\end{align*}
$$

for which a physical interpretation could be assigned to the various terms, there are several difficulties. Primarily, cosine terms alone do not allow for differing energies (the asymmetry discussed earlier) depending on the direction of rotation for θ_{2} or θ_{3} when θ_{1} is not 0 or 180° (note that the energy must be the same for both directions of rotation for O_{2} and O_{3} when O_{1} is 0 or 180°). This is a nonphysical constraint on the

Figure 4. Unit cell of the ($\theta_{1}, \theta_{2}, \theta_{3}$) coordinate space showing the positions and types of critical points: $(\boldsymbol{)}$) minima, ($\boldsymbol{\omega}$) saddle points, () supersaddle points, ($\mathbf{\Delta}$) maxima of the hypersurface.

Table III. Critical-Point Torsional Angles for the n-Butane Hypersurface

point a	θ_{1}, deg	θ_{2}, deg	θ_{3}, deg	order	energy, kcal mol $^{-1}$
0a	69.5	52.3	52.3	0	0.90
0b	180.0	60.0	60.0	0^{c}	-0.05
1a	74.8	-9.7	60.7	1	3.41
1b	180.0	0.0	60.0	1^{c}	3.58
1c	0.0	60.0	60.0	1^{c}	9.27
1d	121.5	60.4	60.4	1	3.51
2a	58.1	-6.5	-6.5	2	8.01
2b	180.0	0.0	0.0	2^{c}	7.20
2c	0.0	0.0	60.0	2^{c}	18.09
2d	112.2	0.7	58.5	2	8.47
3a	0.0	0.0	0.0	3^{c}	44.76
3b	125.5	-0.2	-0.2	3	12.93

${ }^{a}$ The structures are shown in Figure $3 .{ }^{b}$ The energy was calculated from the fitted equation (1) relative to the total ab initio energy of structure $\mathbf{0 b} .^{c}$ This point can also be predicted exactly from stereochemical intuition.
equation and would not be lifted by the addition of products of cosine terms for the interaction of θ_{1}, θ_{2}, and θ_{3} rotations.

Another major difficulty is the average error of $3.26 \mathrm{kcal} /$ mol found for eq 6. This error is larger than most of the barriers and energy differences that are to be determined. The inclusion of cosine terms for the interaction of the three torsions reduced the average error to $2.01 \mathrm{kcal} / \mathrm{mol}$, still unacceptably large. However, as is well-known in statistical analysis, ${ }^{38}$ the inclusion of any interaction terms negates the possibility of discussion of the coefficients for the simple (or "main effects") $\cos n \theta_{i}$ terms. This applies not only to this specific case but also to any surface or hypersurface equation with two or more coordinates, where terms which depend on more than one of the coordinates (the interaction terms) are present.

Despite the lack of physical utility of eq 6 , the critical points and relative energies determined from it are given in Table IV. The largest energy differences occur for the crucial conformers $\mathbf{0 a}$ and $\mathbf{0 b}$, the $\mathrm{G} \rightarrow \mathrm{G}$ saddle point $\mathbf{1 c}$, and the global maximum 3a. The anti--gauche energy difference is $0.95 \mathrm{kcal} / \mathrm{mol}$,

Table IV. Critical Points of the n-Butane Hypersurface as Determined from a Simple Sum of Cosines Equation

point a	θ_{1}, deg	θ_{2}, deg	θ_{3}, deg	order	energy, ${ }^{\text {b }}$; $\mathrm{kcal}^{\text {mol }}{ }^{-1}$
0a	74.5	60.0	60.0	0	-1.92
0b	180.0	60.0	60.0	0^{c}	-2.87
1a	74.5	0.0	60.0	1	3.95
1b	180.0	0.0	60.0	1^{c}	3.01
1c	0.0	60.0	60.0	1^{c}	15.51
1d	123.6	60.0	60.0	1	2.66
2a	74.5	0.0	0.0	2	9.83
2b	180.0	0.0	0.0	2^{c}	8.88
2c	0.0	0.0	60.0	2^{c}	21.39
2d	123.6	0.0	60.0	2	8.54
3a	0.0	0.0	0.0	3^{c}	27.26
3b	123.6	0.0	0.0	3	14.41

${ }^{a}$ The structures correspond to those of Table 111 and are shown in Figure 3. ${ }^{b}$ The energy was calculated from eq 6 , relative to the total ab initio energy of $\mathbf{0 b}$. ${ }^{c}$ This point can also be predicted exactly from stereochemical intuition.
identical with the full hypersurface value, but the barrier heights are not fitted well by (6). For example, the $A \rightarrow G$ barrier is predicted to be $5.53 \mathrm{kcal} / \mathrm{mol}(3.56 \mathrm{kcal} / \mathrm{mol}$ from (1), and the barrier to methyl rotation in the anti conformation is now $5.88 \mathrm{kcal} / \mathrm{mol}(3.63 \mathrm{kcal} / \mathrm{mol}$ from (1)). Note also that all gauche and eclipsed conformers occur with θ_{1} at 74.5 and 123.6°, respectively, and that the values of θ_{2} and θ_{3} are always 0 to 60° since there are no asymmetric terms for these coordinates.

Although many geometrical quantities are adequately predicted by single-determinant minimal basis set calculations, these results indicate that much care must be taken in the optimization of the minimum and saddle-point geometries for reliable relative energies and barrier heights. Although it would be desirable to generate a complete hypersurface involving more variables (the central $\mathrm{C}-\mathrm{C}$ bond length and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in particular), the three-coordinate hypersurface for rigid rotation, reported in this work, is already quite complex. The empirical force field results of Bartell, ${ }^{13}$ however, indicated that 82% of the stabilization energy on going from a rigid gauche ($\theta_{1}=60^{\circ}$) structure to the fully relaxed one came from the torsional modes and only 18% from bond-length and bond-angle adjustments. In view of the small potential improvement, the inclusion of more hypersurface coordinates was regarded to be prohibitively complicated.

Acknowledgments. The authors are grateful to Professor L. S. Bartell for helpful suggestions and discussion. We are indebted to the National Research Council of Canada for continuous financial support. M.R.P. thanks the National Research Council of Canada for the award of a postgraduate scholarship.

References and Notes

(1) See, for example: (a) W. Gerhartz, R. D. Poshusta, and J. Michl, J. Am. Chem. Soc., 98, 6427 (1976); (b) C. W. Bauschlicher, Jr., H. F. Schaefer III, and C. F. Bender, ibid., 98 , 1653 (1976); (c) R. L. Jaffe, J. M. Henry, and J. B. Anderson, ibid., 98, 1140 (1976); (d) H. B. Schlegel, Ph.D. Thesis, Queens University, 1975; (e) M. H. Alexander and A. E. De Pristo, J. Chem. Phys., 65, 5009 (1976); (f) W. Kutzelnigg, V. Staemmler, and C. Hoheisel, Chem. Phys., 1, 27 (1973); (g) G. D. Billing and A. Hunding, Chem. Phys. Lett., 44, 30 (1976); (h) H. B. Schlegel, K. Mislow, F. Sernardi, and A. Bottoni, Theor. Chim. Acta, 44, 245 (1977).
(2) J. B. Hendrickson, J. Am. Chem. Soc., 89, 7036 (1967).
(3) A. W. Burgess, L. L. Shipman, R. A. Nemenoff, and H. A. Scheraga, J. Am Chem. Soc., 98, 23 (1976).
(4) L. S. Bartell, private communication. The force field used was MUB-2', described in ref 5.
(5) S. Fitzwater and L. S. Bartell, J. Am. Chem. Soc., 98, 5107 (1976).
(6) All calculations were performed using the Gaussian 70 program system and internal STO-3G basis set: W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Quantum Chemistry Program Exchange, No. 236, University of Indiana, Bloomington, Ind., 1973.
(7) K. Kuchitsu, Bull. Chem. Soc. Jpn., 32, 748 (1959).
(8) Program SURFIT, available from the authors.
(9) In a normal-coordinate analysis, these negative eigenvalues would correspond to imaginary frequencies of vibration $\bar{\nu}=(1 / 2 \pi c)\left(10^{5} \lambda / g\right)^{1 / 2}$, where $\bar{\nu}$ is the frequency (in cm^{-1}), λ is the eigenvalue of the Wilson GF matrix, c is the speed of light (in $\mathrm{cm} \mathrm{s}^{-1}$), and g is the weight of 1 atomic mass unit in grams. See, for example, D. Steele, "Theory of Vibrational Spectroscopy', W. B. Saunders, Toronto, 1971, Chapter 6.
(10) W. C. Davidon, "Variable Metric Method for Minimization", AEC Research and Development Report ANL-5990 (revised), 1959. We thank P. G. Mezey for the use of his computer program implementing the method.
(11) J. W. Mclver, Jr., and A. Komornicki, J. Am. Chem. Soc., 94, 2625 (1972).
(12) L. Radom and J. A. Pople, J, Am. Chem. Soc., 92, 4786 (1970).
(13) E. J. Jacob, H. B. Thompson, and L. S. Bartell, J. Chem. Phys. 47, 3736 (1967).
(14) K. S. Pitzer, J. Chem. Phys., 8, 711 (1940).
(15) B. P. Dailey and W. A. Felsing, J. Am. Chem. Soc., 65, 44 (1943).
(16) G. J. Szasz, N. Sheppard, and D. H. Rank, J. Chem. Phys. 16, 704 (1948).
(17) N. Sheppard and G. J. Szasz, J. Chem. Phys., 17, 86 (1949).
(18) K. Ito, J. Am. Chem. Soc., 75, 2430 (1953).
(19) R. A. Bonham and L. S. Bartell, J. Am. Chem. Soc., 81, 3491 (1959).
(20) J. E. Piercey and M. G. S. Rao, J. Chem. Phys., 46, 3951 (1967).
(21) P. B. Woller and E. W. Garbisch, Jr., J. Am. Chem. Soc., 94, 5310 (1972).
(22) A. L. Verma, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys., 60, 1540 (1974).
(23) W. F. Bradford, S. Fitzwater, and L. S. Bartell, J. Mol. Struct, 38, 185 (1977).
(24) N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Am. Chem. Soc., 93, 1637 (1971).
(25) E. M. Engler, J. D. Andose, and P. v. R. Schleyer, J. Am. Chem. Soc., 95, 8005 (1973).
(26) D. H. Wertz and N. L. Allinger, Tetrahedron, 30, 1579 (1974)
(27) S. S. Chen, R. C. Wilhoit, and B. J. Zwolinski, J. Phys, Chem. Ref. Data, 4, 859 (1975).
(28) L. L. Shipman, A. W. Burgess, and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A., 72, 543 (1975).
(29) Y. Brunel, H. Faucher, D. Gagnaire, and A. Rassat, Tetrahedron, 31, 1075 (1975).
(30) R. H. Boyd, J. Am. Chem. Soc., 97, 5353 (1975)
(31) J. R. Hoyland, J. Chem. Phys., 49, 2563 (1968).
(32) J. L. Nelson and A. A. Frost, J. Am. Chem. Soc., 94, 3727 (1972).
(33) L. Radom, W. A. Lathan, and J. A. Pople, J. Am. Chem. Soc., 95, 693 (1973).
(34) J. E. Eilers and A. Liberles, J. Am. Chem. Soc., 97, 4183 (1975).
(35) This work.
(36) L. S. Bartell, J. Am. Chem. Soc., 99, 3279 (1977).
(37) The coefficients are $C_{1}=8.64542, C_{2}=5.05359, C_{3}=3.55018, C_{4}$ $=4.13631$, and $C_{5}=2.93741$.
(38) N. K. Namboodiri, L. F. Carter, and H. M. Blalock, Jr., "Applied Multivariate Analysis and Experimental Design", McGraw-Hill, New York, N.Y., 1975, pp 109-110.

[^0]: ${ }^{\dagger}$ Presented in part at the "International Symposium on Stereochemistry". Kingston, Ontario, Canada, June 27-July 2, 1976

